Products Details

Product Name:beta-Nicotinamide Mononucleotide
CAS NO:1094-61-7
Molecular Formula:C11H15N2O8P
beta-Nicotinamide Mononucleotide 1094-61-7 manufacturer
beta-Nicotinamide Mononucleotide 1094-61-7 in stock
beta-Nicotinamide Mononucleotide 1094-61-7 price
Uses:A product of the extracellular Nicotinamide phosphoribosyltransferase (eNAMPT) reaction and a key NAD+ intermediate.
Chemical Properties White to Yellowish lyophilized powder
β-Nicotinamide Mononucleotide Usage And Synthesis
Chemical PropertiesWhite to Yellowish lyophilized powder
Uses:A product of the extracellular Nicotinamide phosphoribosyltransferase (eNAMPT) reaction and a key NAD+ intermediate. It ameliorates glucose intolerance by restoring NAD+ levels in HFD-induced T2D mice . It also enhances hepatic insulin sensitivity and restores gene expression related to oxidative stress, inflammatory response, and circadian rhythm, partly through SIRT1 activation.
Uses:β-Nicotinamide mononucleotide (NMN) is used to study binding motifs within RNA aptamers and ribozyme activation processes involving β-nicotinamide mononucleotide (β-NMN)-activated RNA fragments.
Nicotinamide mononucleotide ("NMN" and "β-NMN") is a nucleotide derived from ribose and nicotinamide. Niacinamide (nicotinamide,) is a derivative of vitamin B3, also known as niacin.) As a biochemical precursor of NAD+, it may be useful in the prevention of pellagra.
β-Nicotinamide mononucleotide (β-NMN) is an intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to generate β-NMN, which is subsequently converted to NAD+ by β-NMN adenyltransferase.At 50-100 μM, β-NMN has been used to enhance NAD biosynthesis and glucose-stimulated insulin secretion in a Nampt+/- mouse model of metabolic disease, demonstrating a role for Nampt in β cell function.Furthermore, at 500 mg/kg/day, it has been shown to ameliorate glucose intolerance in high-fat diet-induced type 2 diabetes mice by restoring NAD+ levels.
Preparationβ-Nicotinamide mononucleotide is a NAD+intermediate. In recent years, the relation of NAD+metabolism and aging-associated disease is attracting attention from various research fields.
Synthesis of β-nicotinamide mononucleotide (NMN)
A solution of NAD (3.5 g, 5.28 mmol) and ZrCl4(6.15 g, 26.4 mmol) in 500 ml water was stirred at 50°C for 30 min. The hydrolysis was monitored by TLC (SiO2EtOH/ 1 M NH4Ac [7 : 3]). The reaction was quenched with 245mL of a 0.5 M solution of Na3PO4. After adjusting to pH 7 with a 2 M solution of HCl, a white precipitate was formed. The suspension was centrifuged 8 min,1,000rpm, the supernatant was collected and the pellet was washed two times with 200 mL water. The combined supernatants wereconcentrated to 1/3 of its volume on a rotary evaporator. The remaining solution was purified with a column filled with Dowex 50WX8 (100-200 mesh, H+-Form, column-material: 2.5 x 30 cm). The column was loaded with 1.5 L5 % HCl and equilibrated with1.5L millipore water until pH 5 was reached. 100 mL of the concentrated solution was loaded on the ion exchange column and eluted with Milliporewater. The first cleavage product eluted was NMN (615 mg, 1.84 mmol,yield:35 %) and yielded a colorless solid after evaporation of the solvent, followed by AMP.
1H NMR (500MHz, D2O)δ: 9.48 (s, 1 H), 9.31 (d,J= 6.2 Hz, 1 H), 9.00 (d,J= 8.2 Hz, 1 H), 8.32 (dd,J= 8.2, 6.2 Hz, 1 H), 6.24 (d,J=5.4 Hz, 1 H), 4.68-4.64 (m, 1 H), 4.58 (t, 1 H), 4.48-4.45 (m, 1 H), 4.36–4.14 (m,J= 12.0, 2 H).
13C NMR (75 MHz, d2o) δ: 165.50, 145.65, 142.15, 139.53, 133.62, 128.19, 99.65, 87.18, 87.06, 77.42, 70.71, 63.89, 63.82.
31P NMR (202 MHz, D2O)δ:-0.03
Definition:A condensation product of nicotinamide and ribose 5-phosphate, in which the nitrogen of nicotinamide is linked to the (β) c-l of the ribose.
Clinical Use:Nicotinamide adenine dinucleotide (NAD+)exists in all living organisms and is well known as a coenzyme in oxidation reduction reaction. Recent research has drawn attention to its relation to “sirtuin” represented by NAD+dependent protein deacetylases, which is to regulate various life phenomena as aging, people are especially paying high attention to “Anti-aging effect”. The turnover of the oxidized form of nicotinamide adenine dinucleotide (NAD+) has attracted interest in regard to longevity.Meanwhile, sirtuin is NAD+dependent and increase of cellular NAD+level is expected to have similar effects to the STACs, thus nicotinamide mononucleotide, an intermediate of NAD+biosynthesis, is also in the spotlight.
Purification Methods:Purify NMN by passage through a column of Dowex-1 (Clform) and washing with H2O until no absorbance is observed at 260 nm. The tubes containing NMN are pooled, adjusted to pH 5.5-6 and evaporated in vacuo to a small volume. This is adjusted to pH 3 with dilute HNO3 in an ice-bath and treated with 20volumes of Me2CO at 0-5o. The heavy white precipitate is collected by centrifugation at 0o. It is best stored wet and frozen or it can be dried to give a gummy residue. It has max 266nm ( 4,600) and min 249nm ( 3600) at pH 7.0 (i.e. no absorption at 340nm). It can be estimated by reaction with CNor hydrosulfite which form the 4-adducts (equivalent to NADH) which have UV max 340nm ( 6,200). Thus after reaction, an OD340 of one is obtained from a 0.1612mM solution in a 1cm path cuvette. [Plaut & Plaut Biochemical Preparations 5 56 1957, Maplan & Stolzenbach Methods Enzymol 3 899 1957, Kaplan et al. J Am Chem Soc 77 815 1955, Beilstein 22/2 V 168.]
Displaying 1 to 3 (of 6 products)